Hatem H. Mahmoud¹; Ezzat A. Altaf²; Mohamed A. Ibrahim¹ and Abaza Kh. M.¹ ¹ National Institute of Oceanography and Fisheries, Alex., Egypt. Corresponding author: Dr. Hatem, H. Mahmoud, E-mail: hatemhanafy@hotmail.com. Received 15th July 2009, Accepted 13th September 2009 #### **Abstract** Species composition of fish in Halaieb/Shalatien coastal zone was studied. A total of 58 species representing 23 families were identified. A checklist of all these identified species is given as well as their habitat of origin [Resident of the Red Sea (Native), Indo-pacific migrant (Migratory) or Lessepsian migrant (Migratory to the Mediterranean Sea)]. From the present study it was so clear that family Serranidae is the most dominant family in the study area contributing about 40% of the landed catch while most other species contributed less than 10% each [Lethrinidae (9.78%), Scaridae (9.67%), Gerridae (6.89%), Carangidae (5.68%), Haemulidae (5.42%), Lutjanidae (4.93%), Siganidae (4.64%), Mugilidae (4.55%), Belonidae (2.82%), Sphyrnidae (1.3%) and Sparidae (1.3%)], while the rest of other families represente less than 1% of the landed catch. The monthly landed catch together with the abundance correlations of the different fish families were studied in Halaieb/Shalatien area during the period of study for proposing a future plan to manage the fisheries of this virgin and promising area. Keywords: Red Sea, Halaieb/Shalatien, Fisheries, abundance correlations, species composition. #### 1. Introduction ISSN: 1687-4285 Halaieb/Shalatien fishing area is located in the South of Foul Bay at the southeastern region of Egypt on the Red Sea (Figure 1). It extends from latitude 22° near Ras Hedreba in the South up till Bir Shalatien 23° 8' N in the North. The coastal area of Halaieb and Shalatien triangle is characterized by the presence of coral reef terraces in many areas, these coral reefs help in breaking the waves and act as protection and feeding areas for different varieties of fishes (Mahmoud, 2005). The main fishing cites in the area are Shalatien, Abu Ramad and Halaieb. Shalatien city is the biggest city in this area and it is considered as the main fishing site due to its central location. Many authors studied the taxonomy of the different species in the Red Sea and compare them with others in different gulfs and oceans as Clark and Gohar (1953), Bayoumi (1972), Ghorab *et al.* (1983), Tortonese (1983), Baranees and Golani (1993), El Etreby *et al.* (1993), Faltas and Rizkalla (1995) and Khalaf and Kochzius (2002). The area of Halaieb and Shalatien could be considered as virgin from the fisheries point of view, there are no previous fisheries studies had been done in this area. The present work aims to explore the fish populations in this area with respect to their present commercial catch rate and investigate the abundance correlations of the different families in the area of study during the period of the present investigation for proposing better fisheries management plans. #### 2. Materials and methods To cover the main landing centers, seasonal field trips (10 days or more each) were carried out to the area of study between July 1997 and March 1999. During these field trips, fish samples were taken directly from the commercial fishing boats (around 404 fishing trips) to be identified using their distinguished external and internal characteristics (Randall, 1983). The Species composition of the landed catch was recorded. Fishery statistics were recorded from several sources in the area including: "General Authority for Fish Resources Development (1990-2000)", the coast-guard office in the area, "The Egyptian Fish Marketing Co.", as well as incentive fishermen working in the area and the wholesalers who collect the fish from the area to be sold in other cities across Egypt (mainly Hurghada city). ² Oceanography Department, Faculty of Science, Alexandria University. Figure 1: The study area (Halaieb / Shalatien area). #### 3. Results #### 3.1. Fisheries aspects in the area of study Due to prevalence of patchy reefs, reef barriers and reef islands in the area of study, most commercial fishing operations take place in the near shore water using small sailing boats (Hory) equipped with an outboard motor of about 15 horse power and is operated by one or two fishermen. They normally spend between 2 or 3 nights fishing over these boats. Another type of fishing boats is built from fiberglass (Launch). A Launch reaches about 5-9 m in length and is equipped with an outboard motor of 20-40 horse power. A Launch trip extends up to 9 days but most of these trips last from 2 to 6 days and their crew may reach about 6 fishermen. In general, line and hooks are the most dominant fishing gear in the area due to the presence of coral reefs; it is applied in all depths up to about 100 m. However, some fishermen who come from nearby areas use "gill" and "trammel" nets which are not usually used by local fishermen. Local fishermen may use gill to collect small fish as bait. #### 3.2. The Landed Catch in the Area of Study Fisheries of "Halaieb and Shalatien area are still unknown with very limited fishery statistics. In this area, fifty eight teleostean fish species, belonging to twenty three families were identified (Plates A to H). Table 1 (a & b) represents these common fish species according to their habitat of origin [Resident of the Red Sea (native), Indo-pacific migrant (migratory) or Lessepsian migrant (migratory to the Mediterranean Sea)] (Froese, R. & D. Pauly, 2009). The landed catch of the commercial fish families and their percentage abundance with respect to the total landed catch of Halaieb/Shalatien area during the period of study is represented in Figure (2). It is clear that, family Serranidae ranks as number one in terms of contribution to the catch where it represents about (40%) of the landed catch, while most the other species contributed less than 10% each [Lethrinidae (9.78%), Scaridae (9.67%), Gerridae (6.89%), Carangidae (5.68%), Haemulidae (5.42%), Lutjanidae (4.93%), Siganidae (4.64%), Mugilidae (4.55%), Belonidae (2.82%), Sphyrnidae (1.3%) and Sparidae (1.3%)] while the rest of the fish families represent each less than 1% of the landed catch. ### 3.3. Monthly Abundance of the Commercial Fish Families The monthly landed catch during the period of study is represented in Figure (3). The figure shows that from August to December (1997) a progressive increase in the landed catch was observed. A decrease occurred in the following four months from January to ISSN: 1687-4285 April (1998) followed by increase in May and June then it decreased continuously to the end of the period of study. Generally, it could be stated that there was no monthly catch pattern throughout the study period. Figure 4 (a & b) shows the variations in the percentages of monthly abundance of each family in the catch during the period of study. The figures indicate that, family Serranidae was the most dominant in the fishing ground all the year round associated with coral reefs, followed by family Lethrinidae which lives on the bottom of both the open water and the coral reef beds and it is always available for fishing. Family Gerreidae is represented in the area of study by only one species (*Gerres oyena*), this species is abundant in the fishing grounds during autumn and winter. Family Carangidae is most abundant in the fishing grounds during autumn and spring months, while family Haemulidae is least abundant in the fishing grounds during summer and autumn months, they are abundance in winter and spring. Family Lutjanidae is abundant in the fishing grounds all year round but are very rare during summer months and family Siganidae is abundant in the fishing grounds of the study area all year round with the exception of spring where they are of very low abundance. Some members of this family are pelagic species and are also seeking cooler water off-shore. Family Mugilidae is less abundant in the fishing grounds during early spring then increases with the beginning of autumn and winter. Fish species belonging to this family are pelagic and they seek cooler off-shore water. On the other hand, family Belonidae is least abundant in the fishing grounds during spring and summer months. It is abundant during autumn and winter. Family Sphyraenidae is more abundant in winter and spring than in summer and autumn. Both families Sparidae and Mullidae were more abundant during autumn and winter and almost absent from the fishing grounds during spring and summer. Some members of these families are pelagic species and are also seeking cooler water off-shore. Family Labridae is the least abundant of all fish families cited above. It shows some degree of increase in abundance during winter, while family Scombridae is almost absent from the fishing grounds during summer months, however it is more or less frequent during winter and spring months. ## **3.4.** Abundance Correlations of Different Fish Families Table (2) shows the abundance correlations of the different fish families in the area of study during the period of the present investigation. It could be noticed that some positive correlations existing between some families. Family Haemulidae and Sphyraenidae are highly correlated (r >0.824, P<0.005). This shows that, they either have the same habitat or occur in the same season and in fact both are pelagic. Sphyraenidae comprises carnivorous fishes, where as Haemulidae are bottom feeders. Hence there is no competition for food between them. Occurring in the same season is the reason for this high correlation. There is other high correlation (r > 0.893, P<0.005) between family Carangidae and family Scombridae due to their abundance in the same months. More highly significant relations could be also noticed between Lutjanidae, Lethrinidae, Gerridae and Mugilidae. This could be attributed to their common association to coral reefs or their abundance in the same season. It should be noted that, Lutjanidae, Lethrinidae and Gerridae are bottom feeders, whereas Mugilidae are known to feed on detritus materials and fine algae found within the surface of bottom sediments. Table 1a: Check list of the common fish species in Halaieb/Shalatien area ["Red Sea Native" (N), "Indo-pacific migrant" (M) and "Lessepsian migrant" (R)]. | No. | Case | Family | Species | Local name
(in Arabic) | |-----|-------|----------------|-----------------------------|---------------------------| | 1 | M & R | Belonidae | Tylosurus choram | خرم | | 2 | N & M | Bothidae | Bothus pantherinus | سمكة موسى | | 3 | M | Carangidae | Carangoides malabaricus | سليخ بياض حمام | | 4 | M | Carangidae | Carangoides chrysophrys | بياض – حمام | | 5 | M | Carangidae | Caranx heberi | جرم بیاض | | 6 | N & M | Carangidae | Caranx sexfaciatus | ضيمة | | 7 | M | Carangidae | Scomberoides commersonianus | نسخة | | 8 | N & M | Carangidae | Scomberoids lysan | عضاض | | 9 | N & M | Carangidae | Trachinotus blochii | ضيمة | | 10 | M | Chanidae | Chanos chanos | سمكة الخني | | 11 | N & M | Chirocenrtidae | Chirocentrus dorab | سمكة السيف | | 12 | N & M | Clupeidae | Amblygaster sirm | سردين | | 13 | N & M | Gerreidae | Gerres oyena | قاصة | | 14 | M | Haemulidae | Plecorhynchus gaterinus | قطرينة | | 15 | M | Haemulidae | Plecorhynchus pictus | شطف | | 16 | M | Haemulidae | Plecorhynchus shotaf | شطف | | 17 | N & M | Holocentridae | Sargocentron spiniferum | بصيلي | | 18 | N | Labridae | Anampses caeruleopnctatus | ملص | | 19 | N & R | Lethrinidae | Lethrinus borbonicus | بنقص | | 20 | N & M | Lethrinidae | Lethrinus lentjan | شر كسة | | 21 | N & M | Lethrinidae | Lethrinus mahsena | شعور محسنى | | 22 | M | Lethrinidae | Lethrinus miniatus | خرمية | | 23 | N & M | Lethrinidae | Lethrinus nebulosus | شعور | | 24 | N & M | Lethrinidae | Lethrinus variegates | دريني | | 25 | N & M | Lethrinidae | Monotaxis grandoculis | شعور أبو عيون | | 26 | N & M | Lutjanidae | Lutjanus bohar | بهار | | 27 | N & M | Lutjanidae | Lutjanus fulviflamma | حبرية | | 28 | N & M | Lutjanidae | Lutjanus gibbus | عصمود | | 29 | M | Lutjanidae | Lutjanus lunulatus | شخرم | Table 1b: Check list of the common fish species in Halaieb/Shalatien area ["Red Sea Native" (N), "Indo-pacific migrant" (M) and "Lessepsian migrant" (R)]. | No. | Case | Family | Species | Local name | |-----|----------|-----------------|---------------------------|--------------------| | | | | | (in Arabic) | | 30 | M | Lutjanidae | Lutjanus quinquelineatus | حبرية | | 31 | M | Mullidae | Upeneus sulphureus | عنبر أصفر | | 32 | M | Mugilidae | Liza macrolepis | بوري عربي | | 33 | M | Paralichthyidae | Pseudorhombus arsius | سمكة موسى | | 34 | M | Priacanthidae | Priacanthus tayenus | أبو شرارة | | 35 | M | Scaridae | Scarus ghobban | حريد | | 36 | M | Scaridae | Scarus rubroviolaceus | فر هو د | | 37 | N | Scombridae | Euthynnus affinis | کو سکو مر <i>ي</i> | | 38 | N | Scombridae | Scomber japonicus | شك الزور | | 39 | N & R | Scombridae | Scomberomorus commerson | دراك | | 40 | M | Scombridae | Scomberomorus guttatus | در اك عادي | | 41 | N, M & R | Serranidae | Cephalopholis miniata | کشر | | 42 | N & M | Serranidae | Cephalopholis oligosticta | کشر أم ربان | | 43 | N & M | Serranidae | Epinephelus areolatus | كشر أبو عدس | | 44 | N & M | Serranidae | Epinephelus chlorostigma | كشر أبو عدس | | 45 | N, M & R | Serranidae | Epinephelus tauvina | كشر توينة | | 46 | N & M | Serranidae | Plectropomus areolatus | ناجل (طراد أزرق) | | 47 | M | Serranidae | Plectropomus maculatus | ناجل (طراد أحمر) | | 48 | N & M | Serranidae | Variola louti | كشر شريف | | 49 | M | Siganidae | Siganus javus | سيجان | | 50 | N, M & R | Siganidae | Siganus luridus | سيجان | | 51 | N, M & R | Siganidae | Siganus rivulatus | سيجان | | 52 | N, M & R | Sparidae | Acanthopagrus bifasciatus | رباق | | 53 | N, M & R | Sparidae | Crenidens crenidens | حفار | | 54 | M & R | Sparidae | Diplodus sargus sargus | بطيط بنقطة | | 55 | N & M | Sparidae | Rhabdosargus sarba | دنیس | | 56 | N & M | Sphyraenidae | Sphyraena barracuda | باراكودا | | 57 | N & M | Sphyraenidae | Sphyraena jello | عقام | | 58 | M | Terapontidae | Terapon jarbua | جعبول خيط | Table 2: The abundance correlations of the identified fish families in Halaieb/Shalatien area during the study period. | | Serra. | Lethrin. | Scarid. | Gerried. | Carang. | Haemuli. | Lutjani. | Sigani. | Mugilid. | Belonid. | Sphyraen. | Sparid. | Mullid. | Labrid. | Scomb. | |--|---------|----------|---------|----------|---------|----------|----------|---------|----------|----------|-----------|---------|---------|---------|--------| | Serranidae | 1 | | | | | | | | | | | | | | | | Lethrinidae Serranidae | 0.553** | 1 | | | | | | | | | | | | | | | Scaridae | 0.503* | 0.316 | 1 | | | | | | | | | | | | | | Gerriedae | 0.178 | 0.677** | -0.11 | 1 | | | | | | | | | | | | | Carangidae Gerriedae | 0.710** | 0.495* | 0.136 | 0.093 | 1 | | | | | | | | | | | | | 0.506* | 0.486* | 0.159 | 0.231 | 0.745** | П | | | | | | | | | | | Lutjanidae | 0.43 | 0.849** | 0.025 | 0.903** | 0.394 | 0,440* | 1 | | | | | | | | | | Siganidae | 0.295 | 0.724** | 0.535* | 0.696** | 0.109 | 0.278 | 0.722** | 1 | | | | | | | | | Mugilidae | 0.216 | 0.717** | -0.086 | 0.977** | 0.117 | 0.248 | 0.926** | 0.710** | 1 | | | | | | | | Belonidae | 0.146 | 0.692** | -0.038 | 0.657** | 0.225 | 0.470* | 0.741** | 0.567** | 0.672** | 1 | | | | | | | Mullidae Sparidae Sphyraenidae Belonidae Mugilidae Siganidae Lutjanidae Haemulidae | 0.349 | 0.308 | -0.074 | 0.153 | 0.684** | 0.824** | 0.306 | 0.033 | 0.177 | 0.169 | 1 | | | | | | Sparidae | 0.111 | 0.664** | -0.102 | 0.718** | 0.042 | 0.194 | 0.704** | 0.573** | 0.767** | **699.0 | 0.001 | 1 | | | | | Mullidae | -0.218 | 0.013 | -0.191 | 0.077 | -0.005 | 0.277 | 0.104 | 0.126 | 0.064 | 0.584** | -0.028 | 0.295 | 1 | | | | Labridae | -0.131 | -0.004 | 0.067 | -0.004 | -0.059 | 0.425 | 0.058 | 0.138 | -0.014 | 0.540* | 0.037 | 0.038 | 0.717** | 1 | | | Scombridae | 0.493* | 0.316 | 0.141 | -0.106 | 0.893** | 0.712** | 0.138 | -0.012 | -0.084 | 0.059 | 0.673** | -0.056 | -0.037 | -0.081 | 1 | *: Correlations are significant (p < .01) **: Corr **: Correlations are highly significant (p < .005). Plate a (1 - 8): Common fish species present in the landed catch of the study area. Plate B (9 - 16): Common fish species present in the landed catch of the study area. | Fisher | ies Status of Halaieb / Shalatien | | |--------|-----------------------------------|--| 343 Plate C (17 - 24): Common fish species present in the landed catch of the study area. Plate D (25 - 32): Common fish species present in the landed catch of the study area. ISSN: 1687-4285 344 Plate E (33 - 40): Common fish species present in the landed catch of the study area. Plate F (41 - 48): Common fish species present in the landed catch of the study area. 347 Fisheries Status of Halaieb / Shalatien Plate G (49 - 56): Common fish species present in the landed catch of the study area. Plate H (57 - 58): Common fish species present in the landed catch of the study area. Figure 2: Percentage abundance of different fish families with respect to the total landed catch from Halaieb/Shalatien area through the study period. Figure (3): The monthly landed catch from "Halaieb/Shalatien area during the period from July 1997 to March 1999. Figure 4a: Abundance (%) of the identified fish families in Halaieb/Shalatien area with respect to the monthly landed catch of the area. ISSN: 1687-4285 Egyptian Journal of Aquatic Research, 2009, **35(3)**, 335-353 Figure 4b: Abundance (%) of the identified fish families in Halaieb/Shalatien area with respect to the monthly landed catch of the area. #### 5. Discussion In the area of study fifty eight fish species, belonging to twenty three families were identified, some of these species proved to be lessepsian migrant and are now frequent members of Mediterranean fishes (Froese, R. & D. Pauly, 2009). All the recognized species were cited before by Goren and Dor (1994) who mention that, the number of fish species in the Red Sea may reach about 1250 species belonging to 156 different families and Randall (1983) who gave a detailed description of the most common reef fishes. He recorded a total of 325 species belonging to 57 families in the Red Sea; about 87% of these fish families are demersal, while the rest (about 13%) are pelagic. Various authors were concerned with the study of these families, i.e. their taxonomy, biology, ecology, fisheries and stock assessment in the Red Sea and other reef locations. Among those authors Gulland (1969), Grofit (1971), Neve and Aiidy (1972), Hashim and Shakour (1981), Ezzat et al. (1982), Young et al. (1982), Sanders et al. (1984), El Etreby (1986), El Agamy et al. (1987), Abu Hakima (1987), Salem (1990 (a & b)), Wassef and Bawazeer (1990 & 1992), Wassef (1991), Andaloro and Rinaldi (1992), Ezzat et al. (1996), Brown and Sumpton (1998), Golani (1998), Rathacharen et al. (1999), Pilling et al. (2003), Westera et al. (2003), Mahmoud (2005) and Mahmoud et al. (2009). Kuo and Shao (1999) studied the species composition of fish in the coastal zones of the Tsengwen estuary, Taiwan. They gave a checklist of 80 families and 244 species of inshore fishes. Among these families Gobiidae, Carangidae, Apogonidae and Clupeidae were the most dominant families. The abundance correlations of the different fish families in the area of study during the period of the present investigation shows that, the fish families which are found in one season have higher positive abundance correlations, while families which are found all over the year have weak correlations with the exception of those families which live in the same ground. #### References - Abu Hakima, R.: 1987, Aspects of the reproductive biology of the grouper, *Epinephelus tauvina* (Forskal), in Kuwait waters. *J. Fish. Biolog.*, Vol. (30): 213 222. - Baranees, A. and Golani, D.: 1993, An annotated list of deep sea fishes collected in the northern Red Sea, Gulf of Aqaba. Isr. *Jour. Zool.*, Vol. (39): 299 336. - Bayoumi, A.R.: 1972, Biological investigations of demersal fishes of economic importance from the - Red Sea. *Bull. Nat. Inst. Oceanog. & Fish.* Vol. (2): 159 183. - Brown, I.W. and Sumpton, W.D.: 1998, Age growth and mortality of Redthroat Emperor (*Lethrinus miniatus*) from the southern Great Barrier reef, Queensland, Australia. *Bull. Mar. Sci.*, 62 (3): 905 917. - Clark, E. and Gohar, H.A.F.: 1953, Publ. Marine Boil. Stat. "The fishes of the Red Sea" Hurghada, Vol. 8. - El Agamy, A.E.; El Shabaka, H.A. and Mohallal, M.E.: 1987, Ovarian cycle and spawning season of *Lethrinus Lentjan* Lecepede in Qatari waters, Arabian Gulf. *Bull. Fac. Sci., Zagazig Univ.*, (9): 672 692. - El Etreby, S.G.: 1986, Fishes of Suez Canal II. Survey and ecological study of fish of Timsah Lake. *Proceedings of Zoological Society of Egypt*, 12: 199-214. - El Etreby, S.G.; Roberts, C.M.; Ghobashy, A.A. and Zyadah, M.A.: 1993, Food and feeding habits of the fish Cephalopholis Hemistiktos (Ruppell, 1830). *J. Egypt Ger. Soc. Zool.* (11B) 57 -72. - Ezzat, A.A.; Mikhail, M.Y.; Wadie, W.F. and Hashem, M.T.: 1982, Length weight relationship and condition factor of Epinephelus aeneus and Epinephelus Alexandrinus in the Egyptian Mediterranean waters. *Bull. Nat. Inst. Oceang. & Fish.*, Vol. 8, no. (1): 172-185. - Ezzat, A.A; Wassef, E.A. and Bawazeer, A.: 1996, Histological studies of the developing gonads of Redspot Emperor *Lethrinus lentjan* (Lacepede), (Pisces, Lethrinidae) from Jeddah waters of the Red Sea. *J. Kau. Mar. Sci.*, Vol. (7): 215 232. - Faltas, S.N. and Rizkalla, S.I.: 1995, Biometric comparison of Chup Mackerel from the Mediterranean and Red Sea, Egypt. *Egyptian Journal of Aquatic Research*, Vol. 21 no. (2): 439 449. - Froese, R. and Pauly. Editors, D.: 2009, FishBase. World Wide Web electronic publication. www.fishbase.org, version (08/2009). - Golani, D.: 1998, The Hebrew Univ. Jerusalem. Impact of Red Sea fish migrants through the Suez Canal on the aquatic environment of the eastern Mediterranean. Middle Eastern Nat. Environ., *YALE F & ES Bull.*, Vol. 103, pp. 375 387. - Ghorab, H.M.; Bayoumi, A.R. and Hassan, A.A.: 1983, Studies on fish of family Serranidae from the north western region of the Red Sea. *Bull. Nat. Inst. Oceanog. & Fish.*, Vol. 9, 256 263. - Goren, M. and Dor, M.: 1994, An updated checklist of the fishes of the Red Sea. The Israel academy of sciences and humanities and the interuniversity institute for marine sciences, Jerusalem, (XII): 120 pp. - Grofit, E.: 1971, The Red Sea fisheries of Ethiopia (1966 1969). Ministry for Foreign Affairs & Ministry of Agriculture, Jerusalem, p. 82. Gulland, J.A.: 1969, Manual of methods for fish stock assessment. Part I. Fish population analysis. FAO Man. Fish. Sci. 4, p154. - Hashim, M.T. and Shakour, A.A.: 1981, Age determination and growth studies of *Lethrinus Mahsena* and *L. Xanthochilus. Jedd. Jour. Mar. Res.*, Vol. (1): 657 666. - Khalaf, M.A. and Kochzius, M.: 2002, Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea. Springer verlag and AWI. - Kuo1, S.R. and Shao, K.T.: 1999, Species composition of fish in the coastal zones of the Tsengwen Estuary, with descriptions of five new records from Taiwan. Zoological Studies 38(4): 391 404. - Mahmoud, H. Hatem: 2005, Assessment of inshore commercial fisheries of Halaieb / Shalatien area "Red Sea". Ph.D. Thesis, Fac. Sci. Alex. Univ. - Mahmoud, H. Hatem; Ezzat, A. Altaf and Ibrahim, A. Mohamed: 2009, Assessment of inshore commercial fisheries of Halaieb / Shalatien area "Red Sea". *Egyptian Jour. Of Aquatic Res.*, Vol. 35, No. 1: 148 164. - Neve, P., and AI-Aiidy, H.: 1972, Red Sea fish. Check list No. 1. *Bull. Mar. Res.* Centre No. 2. Marine R Centre, Jeddah, Saudi Arabia. 13 p. - Pilling, G.M.; Grandcourt, E.M. and Kirkwood, G.P.: 2003, The utility of otolith weight as a predictor of age in the emperor *lethrinus mahsena* and other tropical fish species. *Fish. Res.*, Vol. (60), Iss. 2-3: p. 493 506. - Randall, J.E.: 1983, Red Sea reef fishes, Immel Publishing, London SW9, 9RZ. - Rathacharen, S.; Venkatasami, A. and Degambur, D.: 1999, Growth parameters and mortality rates of *Epinephalus fasciatus, Lethrinus nebulosus, Siganus sutor, Naso unicornis* and *Mugil cephalus* from the coastal areas of Mautitius as estimated - from analysis of length frequencies. Albion Fish. Res. Centre, Farc. Gov. Conf., S (63). - Salem, S.A.: 1990 a, Age and growth in *Lethrinus Bungus* from the Red Sea. *Bull. Nat. Inst. Oceanog.* & Fish., Vol. 16, no. (2): 1 9. - Salem, S.A.: 1990 b, The population dynamics of *Lethrinus Bungus* from the Egyptian Red Sea coastal waters. *Bull. Nat. Inst. Oceanog. & Fish.*, Vol. 16, no. (2): 11 19. - Sanders, M.J.; Kedidi, S.M. and Hegazy, M.R.: 1984, Stock assessment for the spangled emperor (*Lethrinus nebulosus*) caught by small scale fishermen along the Egyptian Red Sea coast. Project for the development of fisheries in the areas of the Red Sea and Gulf of Aden. FAO / UNDP, RAB / 83 / 023 / 01. Cairo. 41p. - Tortonese, E.: 1983, List of fishes observed near Jeddah (Saudi Arabia). *Jour. Fac. Mar. Sci.*, Vol. (3): 105. - Wassef, E.A.: 1991, Comparative growth studies on *Lethrinus lentjan*, Lacepede 1802 and *Lethrinus Mahsena*, Foresskal 1775 (Pisces, Lethrinidae) in the Red Sea. Fish. Res. Vol. (11): 75 92. - Wassef, E. and Bawazeer, F.: 1990, The biology of Lethrinus elongates Val. 1830 (Teleosts: Lethrinidae) in the Red Sea. Bull. Nat. Inst. Oceanog. & Fish., Vol. 16, no. (2): 103 - 124. - Wassef, E. and Bawazeer, F.: 1992, Reproduction of Longnose Emperor (*Lethrinus elongates*) in the Red Sea. Asian Fish. Sci. (5): 219 229. - Westera, M.; Lavery, P. and Hyndes, G.: 2003, Differences in recreationally actions targeted fishes between protected and fished areas of a coral reef marine park. *J. Exp. Mar. Biol. & Ecol.*, Vol. 294, Iss. (2): p. 145 168. - Young, P.C. and Martin, R.B.: 1982, Evidence for protogynous hermaphrodatism in some Lethrinid fishes. *J. Fish Biol.* Vol. (21): 475 484. ISSN: 1687-4285 # دراسة مصايد الأسماك في منطقة حلايب / الشلاتين بالبحر الأحمر حاتم حنفي محمود*, ألطاف عبد العزيز عزت ** محمد أمين إبراهيم* و خالد محمد أباظة* *المعهد القومي لعلوم البحار والمصايد بالأسكندرية ** قسم علوم البحار – كلية العلوم – جامعة الإسكندرية تقع منطقة حلايب/شلاتين في الجزء الجنوبي الشرقي لمصر على ساحل البحر الأحمر حيث تمتد بين خطى عرض 22 إلى 23.8 شمالاً. وتعتبر هذه المنطقة من المناطق القليلة الأستغلال من وجهة نظر المصايد. لذا فإن الدراسة الحالية تهدف إلى الحصول على بيانات حقلية واقعية عن أنواع وكمية الإنتاج من الأسماك في هذه المنطقة. ومن خلال هذه الهراسة تم التعرف علي أنواع الأسماك المصادة من الهنطقة ومواعيد ونسب تواجدها في المصيد. ومن واقع الدراسات الحقلية تم رصد وتصنيف 58 نوع من الأسماك تنتمي الي 23 عائلة من عائلات الأسماك تم جدولتها مع توضيح أصل تواجدها. وقد تبين من النتائج أن عائلة Serranidae (أسماك الكوشر أو الوقار) تمثل 39.8% من جملة الهصيد بينما أغلب العائلات الباقية يمثل كل منها أقل من 10% من جملة الهصيد وبالتحديد عائلات: [Lethrinidae (9.78%) Scaridae (9.67%), Gerridae (6.89%), Carangidae (5.68%), Haemulidae (5.42%), Lutjanidae (4.93%), Siganidae (4.64%), Mugilidae (4.55%), Belonidae (2.82%), Sphyrnidae (1.3%) and Sparidae (1.3%)]. وكذلك تم دراسة كمية المصيد الشهري الكلي للمنطقة ومدي أرتباط التواجد الشهري لهذه العائلات من الأسماك بعضها ببعض، وذلك لوضع خطط مستقبلية لتنظيم وادارة المصايد في هذه المنطقة البكر الواعدة.